PyFoil 1.1
Sto continuando lo sviluppo dell’applicazione presentata in un precedente articolo, PyFoil.
PyFoil è scritto in Python per dispositivi mobili Symbian. Per utilizzarlo è necessario installare PyS60 sul proprio cellulare.
La versione precedente a questa era in grado solo di disegnare profili alari, in questa versione ho migliorato questa funzione e ne ho aggiunte di nuove.
L’applicazione è divisa in quattro schede:
- Intro: è una semplice scheda di introduzione sul programma
- Plot: permette di disegnare un NACA a 4 o 5 cifre e di esportare l’immagine in un file
- Group: permette il calcolo di alcuni gruppi adimensionali quali Reynolds, Mach e Froude, a partire da diversi parametri
- ISA: restituisce i parametri dell’Atmosfera Standard in base all’altitudine, espressa in metri o piedi.
Prossimi sviluppi: l’obiettivo è quello di creare un’applicazione che possa essere da supporto (mobile) ad un ingegnere aerospaziale. Le prossime funzioni riguarderanno: la risoluzione del campo di moto attorno ai profili con relative informazioni connesse; aumento del numero di gruppi adimensionali calcolabili; calcolo di informazioni relative all’ala.
Bug noti: il calcolo di densità e pressione nell’ISA utilizza la stessa funzione sia per la troposfera che per la stratosfera, che è un errore. Purtroppo la formula del calcolo in stratosfera mi dava qualche errore e ho dovuto fare questa semplificazione che risolverò nella prossima versione.
Alcuni screenshot:
Segue il codice del programma.
import e32 import graphics import appuifw from random import randint from math import sqrt, sin, cos, tan, atan, log10, ceil, pi, e as E def draw(r=None): """Draw the buffer on the canvas""" if buffer: c.blit(buffer) c = appuifw.Canvas(redraw_callback=draw) buffer = graphics.Image.new(c.size) appuifw.app.body = c width, height = c.size # N contains geometrical parameter of airfoil airfoil = N = digit = altitude = None def derivative(func, x, par=None): """Derivates a function (par is an additional parameter to derivate functions like mean_line(x, N))""" if par: return (func(x, par) - func(x+0.01, par))/0.01 else: return (func(x) - func(x+0.01))/0.01 def mean_line(x, N): """Airfoil mean line function (N contains NACA parameters)""" t, m, p = N if digit == 4: if p == 0: return 0 elif x <= p: return m / (p**2) * (2*p*x - x**2) elif x > p: return m * (1 - 2*p + 2*p*x - x**2) / ((1 - p)**2) elif digit == 5: if x <= m: return p / 6 * (x**3 - 3*m*x**2 + m**2 * (3 - m)*x) elif x > m: return p * m**3 / 6*(1 - x) def thickness(x, N): """Airfoil thickness function (N contains NACA parameters)""" t, m, p = N return t / 0.2 * (+0.2969 * x**0.5 + -0.1260 * x**1 + -0.3516 * x**2 + +0.2843 * x**3 + -0.1015 * x**4) def NACA_set(): """Set NACA to operate""" global airfoil, digit, N airfoil = appuifw.query(u'Insert 4-5 digit NACA', 'number') if airfoil: digit = ceil(log10(airfoil)) # Digit correction for 00XX and 000X if digit in [1, 2]: digit = 4 t = (airfoil%100)/100. # Thickness if digit == 4: m = (airfoil/1000)/100. # Max camber p = (airfoil/100-airfoil/1000*10)/10. # Max camber position N = (t, m, p) NACA_plot() elif digit == 5: mean_line_datas = {210:[0.0580, 361.4], 220:[0.1260, 51.64], 230:[0.2025, 15.957], 240:[0.2900, 6.643], 250:[0.3910, 3.230]} try: m = mean_line_datas[airfoil/100][0] p = mean_line_datas[airfoil/100][1] N = (t, m, p) NACA_plot() except KeyError: appuifw.note(u'NACA not supported!', 'error') else: appuifw.note(u'NACA must be 4 or 5 digit!', 'error') else: appuifw.note(u'NACA must be 4 or 5 digit!', 'error') def NACA_plot(): """Plots a NACA""" if not airfoil: NACA_set() if not airfoil: return buffer.clear() font = (None, 30) color0 = (0, 0, 0) # Text color color1 = (0, 0, 255) # Airfoil color color2 = (255, 0, 0) # Meanline color color3 = (100, 100, 100) # Radius color # Draws the axes s_width = width - 10 # Scaled width, for the border y0 = height/2 # Origin of axes buffer.line((0, y0, width, y0), outline=color0) # Draws the scale unit = 10 # Axis will be divided into %unit part for u in range(11): buffer.line((5 + u * s_width / unit, y0 - 2, 5 + u * s_width / unit, y0 + 2), outline=color0) # Unit legend buffer.line((10, 2*y0 - 20, 10 + s_width/unit, 2*y0 - 20), outline=color0) buffer.text((20 + s_width/unit, 2*y0 - 15), u'%d%% of the chord' % (100/unit), fill=color0) # Displays infos about the airfoil radius = 1.1019 * N[0]**2 radius_pos = (5, y0 - radius*s_width, 5 + radius*s_width*2, y0 + radius*s_width) buffer.ellipse(radius_pos, outline=color3) buffer.text((10, 30), u'NACA %0#4d' % airfoil, font=font, fill=color0) buffer.text((10, 55), u'Camber radius: %.4f' % radius, fill=color0) # Plot for x in range(s_width): x = float(x)/s_width # xx is an increment of x to calculate next point xx = (x * s_width + 1) / s_width # Meanline xM_1 = 5 + x * s_width yM_1 = y0 - mean_line(x, N) * s_width xM_2 = 5 + xx * s_width yM_2 = y0 - mean_line(xx, N) * s_width buffer.line((xM_1, yM_1, xM_2, yM_2), outline=color2) # Airfoil (U: Upper, L: Lower, 1-2 are 1st and 2nd point of the line) teta = atan(derivative(mean_line, x, N)) xU_1 = 5 + (x - thickness(x, N)*sin(teta)) * s_width yU_1 = y0 - (mean_line(x, N) - thickness(x, N)*cos(teta)) * s_width xL_1 = 5 + (x + thickness(x, N)*sin(teta)) * s_width yL_1 = y0 - (mean_line(x, N) + thickness(x, N)*cos(teta)) * s_width xU_2 = 5 + (xx - thickness(xx, N)*sin(teta)) * s_width yU_2 = y0 - (mean_line(xx, N) - thickness(xx, N)*cos(teta)) * s_width xL_2 = 5 + (xx + thickness(xx, N)*sin(teta)) * s_width yL_2 = y0 - (mean_line(xx, N) + thickness(xx, N)*cos(teta)) * s_width buffer.line((xU_1, yU_1, xU_2, yU_2), outline=color1, width=2) buffer.line((xL_1, yL_1, xL_2, yL_2), outline=color1, width=2) draw() def NACA_export(): """Export NACA plot as image""" if not airfoil: NACA_set() if not airfoil: return new_width = appuifw.query(u'Image width (px)', 'number', 800) new_height = new_width / 1.4 image = graphics.Image.new((new_width, new_height)) image.clear() font = (None, 30) color0 = (0, 0, 0) # Text color color1 = (0, 0, 255) # Airfoil color color2 = (255, 0, 0) # Meanline color color3 = (100, 100, 100) # Radius color # Draws the axes s_width = new_width - 10 # Scaled width, for the border y0 = new_height/2 # Origin of axes image.line((0, y0, new_width, y0), outline=color0) # Draws the scale unit = 10 # Axis will be divided into %unit part for u in range(11): image.line((5 + u * s_width / unit, y0 - 2, 5 + u * s_width / unit, y0 + 2), outline=color0) # Unit legend image.line((10, 2*y0 - 20, 10 + s_width/unit, 2*y0 - 20), outline=color0) image.text((20 + s_width/unit, 2*y0 - 15), u'%d%% of the chord' % (100/unit), fill=color0) # Displays infos about the airfoil radius = 1.1019 * N[0]**2 radius_pos = (5, y0 - radius*s_width, 5 + radius*s_width*2, y0 + radius*s_width) image.ellipse(radius_pos, outline=color3) image.text((10, 30), u'NACA %0#4d' % airfoil, font=font, fill=color0) image.text((10, 55), u'LE radius: %.4f' % radius, fill=color0) # Plot for x in range(s_width): x = float(x)/s_width # xx is an increment of x to calculate next point xx = (x * s_width + 1) / s_width # Meanline xM_1 = 5 + x * s_width yM_1 = y0 - mean_line(x, N) * s_width xM_2 = 5 + xx * s_width yM_2 = y0 - mean_line(xx, N) * s_width image.line((xM_1, yM_1, xM_2, yM_2), outline=color2) # Airfoil (U: Upper, L: Lower) teta = atan(derivative(mean_line, x, N)) xU_1 = 5 + (x - thickness(x, N)*sin(teta)) * s_width yU_1 = y0 - (mean_line(x, N) - thickness(x, N)*cos(teta)) * s_width xL_1 = 5 + (x + thickness(x, N)*sin(teta)) * s_width yL_1 = y0 - (mean_line(x, N) + thickness(x, N)*cos(teta)) * s_width xU_2 = 5 + (xx - thickness(xx, N)*sin(teta)) * s_width yU_2 = y0 - (mean_line(xx, N) - thickness(xx, N)*cos(teta)) * s_width xL_2 = 5 + (xx + thickness(xx, N)*sin(teta)) * s_width yL_2 = y0 - (mean_line(xx, N) + thickness(xx, N)*cos(teta)) * s_width image.line((xU_1, yU_1, xU_2, yU_2), outline=color1, width=2) image.line((xL_1, yL_1, xL_2, yL_2), outline=color1, width=2) file_name = appuifw.query(u'Insert file name', 'text', u'.png') file_path = u'C:\\%s' % file_name image.save(file_path) del image appuifw.note(u'Image saved at C:\\%s' % file_name, 'info') # Ask if want to send the file if appuifw.query(u'Send the file via BT?', 'query'): try: import btsocket as socket except ImportError: import socket address, services = socket.bt_obex_discover() channel = services.items()[0][1] try: socket.bt_obex_send_file(address, channel, file_path) except error: appuifw.note(error.decode('utf-8'), 'error') def velocity_field(): """Solve the velocity field""" appuifw.note(u'Coming soon!', 'info') def ISA(z): """International standard atmosphere""" T_sl = 288.15 # Kelvin p_sl = 101325.0 # Pascal rho_sl = 1.225 # kg/m^3 # Air gas constant: 287 J / (kg * K) T = T_sl - 6.5 * (z/1000.0) # Thermal gradient: -6.5 K/km p = p_sl * (T/T_sl) ** (9.81 / 287 / 6.5e-3) rho = rho_sl * (T/T_sl) ** (9.81 / 287 / 6.5e-3 - 1) # Troposphere #if z < 11000: # T = T_sl - 6.5 * (z/1000.0) # Thermal gradient: -6.5 K/km # p = p_sl * (T/T_sl) ** (9.81 / 287 / 6.5e-3) # rho = rho_sl * (T/T_sl) ** (9.81 / 287 / 6.5e-3 - 1) ## Stratosphere #elif z >= 11000 and z < 20000: # T = 216.65 # p = 2270 * E ** (-9.81 / 287 / 6.5e-3 * (z-11000)) # rho = 0.2978 * E ** (-9.81 / 287 / 6.5e-3 * (z-11000)) #elif z >= 20000: # # Up 20000 m thermal gradient is approximated # T = 216.65 + 0.98 * (z-20000)/1000.0 # Thermal gradient: ~ 0.98 K/km # p = 2270 * E ** (-9.81 / 287 / 6.5e-3 * (z-11000)) # rho = 0.2978 * E ** (-9.81 / 287 / 6.5e-3 * (z-11000)) return (T, p, rho) def Reynolds(): """Shows a form to calculate dimensionless quantity""" fields = [(u'Speed [m/s]', 'float', 0.0), (u'Density [kg/m^3]', 'float', 0.0), (u'D. viscosity [Pa*s]', 'float', 0.0), (u'Linear dimension [m]', 'float', 0.0)] flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced form = appuifw.Form(fields, flag) form.execute() # Result speed, density, viscosity, linear_d = [i[2] for i in list(form)] reynolds = density * speed * linear_d / viscosity appuifw.query(u'Reynolds:', 'text', unicode(reynolds)) appuifw.query(u'Reynolds (exp):', 'text', u'%.0e' % reynolds) def Mach(): """Shows a form to calculate dimensionless quantity""" fields = [(u'Speed [m/s]', 'float', 0.0), (u'Sound speed [m/s]', 'float', 0.0), (u'* Temperature [\u00B0C]', 'float', 0.0), (u'* Altitude [m]', 'float', 0.0)] flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced form = appuifw.Form(fields, flag) appuifw.note(u'You may use temp. or alt. instead of sound speed', 'info') form.execute() # Result speed, sound_speed, temperature, altitude = [i[2] for i in list(form)] if sound_speed == 0.0: if temperature != 0.0: # Air gas constant: 287 J / (kg * K) sound_speed = (1.4 * 287 * (273.15+temperature)) ** 0.5 elif altitude != 0.0: sound_speed = (1.4 * 287 * ISA(altitude)[0]) ** 0.5 else: appuifw.note(u'Not enough parameters', 'error') mach = speed / sound_speed appuifw.query(u'Mach:', 'text', unicode(mach)) def Froude(): """Shows a form to calculate dimensionless quantity""" fields = [(u'Speed [m/s]', 'float', 0.0), (u'\u0394 z [m]', 'float', 0.0), (u'Gravity [m/s^2]', 'float', 9.81)] flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced form = appuifw.Form(fields, flag) form.execute() # Result speed, linear_d, gravity = [i[2] for i in list(form)] froude = speed * speed / gravity / linear_d appuifw.query(u'Froude:', 'text', unicode(froude)) def rotate_screen(): """Rotate the screen and rebuilt the canvas""" global width, height, c, buffer screen = appuifw.app.orientation if screen == 'landscape': appuifw.app.orientation = 'portrait' else: appuifw.app.orientation = 'landscape' del c c = appuifw.Canvas(redraw_callback=draw) width, height = c.size buffer = buffer.resize(c.size) def set_altitude(um): """Set altitude (um is unit of measurement)""" global altitude if um == 'm': altitude = appuifw.query(u'Insert altitude [m]:', 'float') tab_3() elif um == 'ft': altitude_ft = appuifw.query(u'Insert altitude [ft]:', 'float') altitude = altitude_ft * 0.3048 tab_3() if altitude == None: appuifw.note(u'Altitude not set!', 'error') return def quit(): e32.Ao_lock().signal() def tab_0(): """Starting graphics""" buffer.clear() color1 = (0, 0, 0) color2 = (0, 255, 0) color3 = (0, 150, 0) font1 = (u'Nokia Hindi TitleSmBd S6', 30) font2 = font3 = (u'Nokia Hindi TitleSmBd S6', 15) text1 = u'NACA PyFoil' text2 = u'By Ale152' text3 = u'www.wirgilio.it' box1 = buffer.measure_text(text1, font1) box2 = buffer.measure_text(text2, font2) box3 = buffer.measure_text(text3, font3) position1 = ((width-box1[0][2])/2, 30) position2 = ((width-box2[0][2])/2, 50) position3 = ((width-box3[0][2])/2, 65) buffer.text(position1, text1, font=font1, fill=color1) buffer.text(position2, text2, font=font2, fill=color1) buffer.text(position3, text3, font=font3, fill=color1) s_width = width - 40 # Scaled width, for the border N = (0.12, 0, 0) # NACA intro for x in range(s_width): x = float(x)/s_width # Airfoil (U: Upper, L: Lower) xL = xU = 20 + x * s_width yU = height/2 - thickness(x, N) * s_width yL = height/2 + thickness(x, N) * s_width buffer.line((xU, yU, xL, yL), outline=color2, width=2) buffer.point((xL, yL), outline=color3, width=2) draw() def tab_1(): """NACA Plot tab""" if not airfoil: buffer.clear() position = (10, 30) color1 = (0, 0, 100) # Text color2 = (0, 0, 0) # Axes color3 = (80, 80, 80) # Units color4 = (0, 0, 200) # Function buffer.text(position, u'Please set a NACA from menu', fill=color1) # Draws an axes system (origin in [w/3, h/2]) for k in range(30): xA = k * width/30 yA = height/2 xO = width/3 yO = k * (height-50)/30 buffer.line((xA, yA-2, xA, yA+3), outline=color3) buffer.line((xO-2, 50+yO, xO+3, 50+yO), outline=color3) buffer.line((width/3, 50, width/3, height), outline=color2) buffer.line((0, height/2, width, height/2), outline=color2) # Draws a function for t in range(900): t = float(t) x = t * cos(t*pi/180) / 15 y = t * sin(t*pi/180) / 15 buffer.point((width/3 + x, height/2 + y), outline=color4, width=2) draw() return else: NACA_plot() def tab_2(): """Dimensionless goup form""" buffer.clear() position = (10, 30) color1 = (0, 0, 100) color2 = (200, 0, 0) buffer.text(position, u'Select a group from menu', fill=color1) x0 = width / 2 y0 = height / 1.5 l = 15 for i in range(400): x0 += randint(-l, l) y0 += randint(-l, l) if y0 < 50: y0 = 50 if y0 > height: y0 = height if x0 < 0: x0 = 0 if x0 > width: x0 = width buffer.point((x0, y0), outline=color2, width=2) draw() def tab_3(): """Shows a form to calculate ISA parameters""" if altitude == None: buffer.clear() position = (10, 30) color = (0, 0, 100) buffer.text(position, u'Please set altitude from menu', fill=color) font = (u'Nokia Hindi TitleSmBd S6', 30) isa_text = [u'International', u'Standard', u'Atmosphere'] buffer.text((10, 70), isa_text[0], font=font, fill=color) buffer.text((30, 100), isa_text[1], font=font, fill=color) buffer.text((50, 130), isa_text[2], font=font, fill=color) draw() return temp, press, dens = ISA(altitude) fields = [(u'Temperature [K]', 'text', u'%.3f' % temp), (u'Temperature [\u00B0C]', 'text', u'%.3f' % (temp - 273.15)), (u'Pressure [Pa]', 'text', u'%.3f' % press), (u'Density [kg/m^3]', 'text', u'%.3f' % dens)] flag = appuifw.FFormDoubleSpaced form = appuifw.Form(fields, flag) form.execute() def set_tab(index): """Set tab function""" if index == 0: # Starting tab_0() appuifw.app.menu = menu_0 elif index == 1: # NACA Plot tab_1() appuifw.app.menu = menu_1 elif index == 2: # Dim.less goup tab_2() appuifw.app.menu = menu_2 elif index == 3: # ISA tab_3() appuifw.app.menu = menu_3 tabs = [u'Intro', u'Plot', u'Group', u'ISA'] appuifw.app.set_tabs(tabs, set_tab) # Starting menu menu_0 = [(u'Rotate screen', rotate_screen), (u'About', lambda: appuifw.note(u'Created by Ale152', 'info')), (u'Quit', quit)] # NACA Plot menu menu_1 = [(u'Set NACA', NACA_set), (u'Plot', NACA_plot), (u'Export IMG', NACA_export), (u'Rotate screen', rotate_screen), (u'Quit', quit)] # Dim.less group menu menu_2 = [(u'Reynolds', Reynolds), (u'Mach', Mach), (u'Froude', Froude), (u'Rotate screen', rotate_screen), (u'Quit', quit)] # ISA menu menu_3 = [(u'Set altitude', ((u'Meters', lambda: set_altitude(um='m')), (u'Feet', lambda: set_altitude(um='ft')))), (u'Rotate screen', rotate_screen), (u'Quit', quit)] set_tab(0) app_lock = e32.Ao_lock() app_lock.wait()